Menoufia University
Faculty of Engineering, Shebin EldKom, Basic Engineering science Department Second Semester Examination, 2014-2015 Date of Exam: 1/6/2015

Subject: Ordinary Differential Equations (1). Code: BES 609
Year: postgraduate students
Time Allowed: 3 hours
Total Marks: 100 marks

A mswer the pollowing questions

Question 1

a) Use the method of Frobenius to find one solution near $x=0$ of the equation

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

b) Consider the nonlinear system

$$
x^{\prime}=-x+3 y^{2}, \quad y^{\prime}=-y, \quad z^{\prime}=3 y^{2}+z
$$

Solve this system and compute the stable and unstable for the equilibrium at the origin.
c) write the following system in matrix form:

$$
\begin{aligned}
& y_{1}^{\prime}=y_{1}+2 y_{2}+2 e^{4 t} \\
& y_{2}^{\prime}=2 y_{1}+y_{2}+e^{4 t}
\end{aligned}
$$

- Conclude that every initial value problem for above system has a unique solution on $(-\infty, \infty)$.
- Verify that

$$
\mathbf{y}=\frac{1}{5}\left[\begin{array}{l}
8 \\
7
\end{array}\right] e^{4 t}+c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{3 t}+c_{2}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{-t}
$$

is a solution of the above system for all values of the constants c_{1} and c_{2}.

- Find the solution of the initial value problem

$$
\mathrm{y}^{\prime}=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \mathrm{y}+\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{4 t}, \mathrm{y}(0)=\frac{1}{5}\left[\begin{array}{c}
3 \\
22
\end{array}\right]
$$

a) Write briefly the steps of the Runge-Kutta algorithm to solve the differential equations.
b) Solve the initial value problem using Runge-Kutta Method with step size $h=0.2$ on the interval $[1,2]$, then compare the approximate solution with the actual solution:

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0, \quad y^{\prime}(1)=2, y(1)=4 .
$$

c) Find $y(1)$ for $y^{\prime}=y-x ; y(0)=2$. using Euler's method with $\mathrm{h}=0.25$.
d) A cylindrical tank is receiving and discharge water at the same time. Initially the tank is empty and at time t the depth is $h . h$ and t are replaced by the equation

$$
\frac{d h}{d t}+k h=k h_{0} e^{-k t}
$$

- Find the depth of water as a function of t and sketch the graph of h against t.
- Sketch the direction field.

